Kernel-based learning of orthogonal functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Self-concordance of Barrier Functions Based on Kernel-functions

 Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

An Online Kernel Learning Algorithm based on Orthogonal Matching Pursuit

Matching pursuit algorithms learn a function that is weighted sum of basis functions, by sequentially appending functions to an initially empty basis, to approximate a target function in the least-squares sense. Experimental result shows that it is an effective method, but the drawbacks are that this algorithm is not appropriate to online learning or estimating the strongly nonlinear functions....

متن کامل

Inductive Regularized Learning of Kernel Functions

In this paper we consider the problem of semi-supervised kernel function learning. We first propose a general regularized framework for learning a kernel matrix, and then demonstrate an equivalence between our proposed kernel matrix learning framework and a general linear transformation learning problem. Our result shows that the learned kernel matrices parameterize a linear transformation kern...

متن کامل

Inductive Regularized Learning of Kernel Functions

In this paper we consider the fundamental problem of semi-supervised kernel function learning. We first propose a general regularized framework for learning a kernel matrix, and then demonstrate an equivalence between our proposed kernel matrix learning framework and a general linear transformation learning problem. Our result shows that the learned kernel matrices parameterize a linear transfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.020